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Outline 

!    What is LIS? – motivation, heritage 

!    Software architecture, design paradigms 

!    Source code, repository, software requirements 

!    LIS version 7 – upcoming features 

!    Two new toolkits that accompany LIS – LDT and LVT.  



What is LIS?	



•  A system to study land 
surface processes and land-
atmosphere interactions 

•  “Use best available 
observations” to force and 
constrain the models 

•  Applications: Weather and 
climate model initialization, 
water resources 
management, natural 
hazards management 



!   Need a system viable at different 
spatial and temporal scales  

!    Be able to demonstrate the impact of 
observations at the scale of 
observations themselves 

!   Explicit characterization of the land 
surface at the same spatial scales as 
that of cloud and precipitation 
processes helps in improving the 
characterization of land-atmosphere 
interactions 

!   Need scalable, high performance computing support to deal with computational 
challenges 

!   Need advanced land surface models and modeling tools (data assimilation, 
optimization, uncertainty modeling)  



LIS - heritage 
!   LIS is a land surface modeling and data 

assimilation system (LDAS)  

!   Capable of modeling at different spatial scales, 
globally and regionally 

North American LDAS 
1/8th degree spatial 
resolution 

Global LDAS 
1/4th degree spatial resolution 

LIS 
global, regional, point 
up to 1km and finer 

Kumar et al. (2006): Land Information System: An interoperable Framework for High Resolution Land Surface Modeling, 
Environmental Modeling and Software, Vol 21, pp 1402-1415. 


Peter-Lidard et al. (2007): High-performance earth system modeling with NASA/GSFC’s Land Information System, 
Innovations in Systems and Software Engineering, 3(3),157—165.




LIS modes of operation 

Land Surface Models (Noah, 
CLM, Catchment, JULES, 

TESSEL, HySSIB, Sacramento, 
SNOW17)

Water and Energy 
Fluxes, Soil Moisture and 

Temperature profiles, 
Land surface states

Parameters
(Topography, Soil 

properties, vegetation 
properties)

Meteorological 
Boundary Conditions 

(Forcings)

States (Soil Moisture, 
Snow, Skin 

Temperature)

LIS - OPT/UE

Optimization and Uncertainty Estimation
(LM, GA, RW-MCMC, DEMC)

Hydrologic 
Forecasts

Coupled or 
Forecast Mode

WRF

LIS - WRF
InterfaceData Assimilation  (DI, EnKF)

LIS - DA

Observations (Soil 
Moisture, Snow, Skin 

Temperature)



Soil Moisture
Evaporation

Sensible Heat Flux
Runoff

Snowpack 
properties

LIS - APP

LIS - Outputs

Weather

Landslides

Floods

Drought

Agriculture

LIS subsystems and toolkits 

Radiative Transfer 
Models 

(CMEM,CRTM)

LIS - RTM

Observations

Data Assimilation  
(DI,EnKF)

LIS - DA

Land Surface Models 
(Noah, CLM, Catchment, 

TESSEL, JULES)

LIS - LSMLIS - OPT

Optimization 
(LM, GA, SCE-UA)

Parameters

Meteorological 
Forecasts, Analysis, 

Observations

LIS - UE

Uncertainty Estimation 
(MCMC,DEMC)

Parameters

LDT

LDT

Land surface parameter processing
DA/OPTUE preprocessing

Downscaling support
Forcing adjustments (bias correction)

Restart/ensemble generation

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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We gratefully acknowledge the financial support from the US Air Force Weather Agency 
(AFWA) and the NASA Earth Science Technology Office (ESTO)."
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Kumar, S.V., C.D. Peters-Lidard, J.A. Santanello, K.W. Harrison, Yuqiong Liu and Michael Shaw (2012), “Land surface Verification Toolkit (LVT): A generalized framework for land surface model evaluation, submitted to Geosci. Model. Dev."

LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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LIS software architecture 

Driver layer



Abstractions layer



Model layer



Land Surface 
Model

Running 
Mode

 Meteorological
Inputs

Domains Data
Assimilation

Land 
Surface

Parameters
OptimizationRTM Uncertainty

Estimation
Applications Routing

Noah
CLM

Catchment
Hyssib

Sacramento
SNOW17
HTESSEL
JULES

Analysis
Forecast
Coupled
Optimization

NLDAS
GDAS
CMAP
CMORPH
ECMWF
AGRMET
GEOS
TRMM

Landcover (UMD, USGS, 
MODIS)

Soils (FAO, STATSGO)
Topography (USGS)

LAI (AVHRR/MODIS)
Greenness (AVHRR/MODIS)

Albedo (AVHRR/MODIS)

Lat/lon
Gaussian

Lambert Conformal
Mercator

Polar Stereographic
UTM

CRTM
CRTM2E
CMEM
HUT

Direct Insertion
EnKF

LM
GA

MC-SIM
RW-MCMC
DEMC

Landslide 
models

Crop models

NLDAS 
router

HYMAP
NDHMS



LIS software architecture 

Driver layer



Abstractions layer



Model layer



Land Surface 
Model

Running 
Mode

 Meteorological
Inputs

Domains Data
Assimilation

Land 
Surface

Parameters
OptimizationRTM Uncertainty

Estimation
Applications Routing

Noah
CLM

Catchment
Hyssib

Sacramento
SNOW17
HTESSEL
JULES

Analysis
Forecast
Coupled
Optimization

NLDAS
GDAS
CMAP
CMORPH
ECMWF
AGRMET
GEOS
TRMM

Landcover (UMD, USGS, 
MODIS)

Soils (FAO, STATSGO)
Topography (USGS)

LAI (AVHRR/MODIS)
Greenness (AVHRR/MODIS)

Albedo (AVHRR/MODIS)

Lat/lon
Gaussian

Lambert Conformal
Mercator

Polar Stereographic
UTM

CRTM
CRTM2E
CMEM
HUT

Direct Insertion
EnKF

LM
GA

MC-SIM
RW-MCMC
DEMC

Landslide 
models

Crop models

NLDAS 
router

HYMAP
NDHMS

ESMF_State 
objects



What is ESMF? 

!  Software for building and coupling 
weather, climate and related models 

!  Provides representations of Earth 
system grids, tools for mapping between 
them in multiprocessor environment 

!  Includes toolkits for building 
applications: time manager, error 
handling, resource management, parallel 
communications 

!  An application once it is wrapped with 
ESMF is known as a “Gridded 
component”  

!  Gridded components are coupled using 
“coupler components” 

ATM 	


(WRF)	



Land	


(LIS)	





Key ESMF objects 

!   ESMF_Grid - representation 
of a grid 

!   ESMF_State - objects that 
hold gridded data 

!   ESMF_State consists of 
ESMF_Field, ESMF_Bundle, 
ESMF_Array 

!   Data is exchanged between 
ESMF Gridded components 
using ESMF_States  

ESMF_Field	



ESMF_Bundle	



ESMF_Array	





Object Oriented Programming 

States and Behavior	



 Gear	


Speed	



Pedal stance	



change gear	


apply brakes	



speed up	



!   Think Objects  

!   Modularity : Source code for an object, 
written and maintained independent of the 
source code  for other objects 

!   Reusability: if the object already exists, you 
can use that object in your application 

!   Extensibility: Can be customized for new 
applications 

!   Inversion of Control - “Don’t call us, we’ll 
call you” 

!   Generic code controls execution of problem-
specific code 



Customization: How do we add a new 
LSM? 

!  Need to implement a set 
of interfaces related to 
the operation of a land 
surface model 

!  In LIS, these abstract 
implementations are 
known as “plugins” 

!  under src/plugins  



How do we add a new forcing 
scheme? 

!  Extend the abstract 
interfaces related to a 
forcing scheme 



Combining these components 

•  LIS provides the “wirings” 
between the abstract 
implementations 

•  Incorporating these 
components through 
plugins automatically 
ensure their integrated 
and interoperable use 

Forcing_state



LIS source code 
http:://lis.gsfc.nasa.gov	

 http:://modelingguru.nasa.gov	





Software Requirements 

!   Fortran 90/95 compiler (g95 will not work for LIS5.0)  

!   preferred : intel, pgi, lahey, absoft 

!   C compiler 

!   MPI - if parallel processing capability is desired 

!   Earth System Modeling Framework (ESMF) 

!   5.x – for LIS 7.0 

!   LIS supports Grib1, NETCDF, HDF formats  

!   NETCDF- mandatory, Grib, HDF optional 

LIS cookbook





LIS Documentation 

!  User’s guide 

• Step-by-step instructions on how to 
build the LIS code 

!  Developer’s guide 

• Instructions on how to bring in new 
functionalities (LSMs, forcing schemes, 
Data Assimilation, parameter data, etc.) 

!  Reference manual 



Getting LIS source 

!  Use the subversion repository (
https://progress.nccs.nasa.gov) 

!  Apply for an account  

(christa.d.peters-lidard@nasa.gov) 

!  Request a “Project Release” of the LIS 
code                                  (
http://lis.gsfc.nasa.gov/register.shtml) 

!  Download the tarball (Internal users who 
use the repository can check out the 
appropriate branch) 



LIS source code repository 
!   Helpful links 

• http://subversion.tigris.org/ 

• http://svnbook.red-bean.com/ 

!   Check out the LIS code: 

• svn co https://progress.nccs.nasa.gov/svn/lis/ src 

5.0	



Public	

 Internal	



6.0	



Public	

 Dev	

 AFWA	



7.0	



Public	

 Dev	

 AFWA	



FEWS
NET	



NOHR
SC	





The	
  Land	
  surface	
  Data	
  Toolkit	
  (LDT):	
  	
  
Overview	
  and	
  Examples	
  

The	
  “preprocessor”	
  to	
  LIS-­‐7	
  
July	
  9,	
  2014	
  



The	
  Land	
  Data	
  Toolkit	
  (LDT)	
  
•  A	
  new	
  preprocessing	
  toolkit	
  for	
  LIS’s	
  model	
  
parameters	
  
– Processes	
  and	
  groups	
  parameters	
  needed	
  for	
  each	
  
land	
  surface	
  model	
  (LSM)	
  

– MulQple	
  processing	
  opQons	
  	
  

•  ObservaQon-­‐based	
  data	
  assimilaQon	
  opQons	
  
– CDF-­‐matching,	
  etc.	
  

•  Generate	
  custom-­‐made	
  restart	
  files	
  for	
  LSMs	
  
– e.g.,	
  ensemble-­‐based	
  restart	
  files	
  

7/9/14	
   LDT	
  Overview	
   22	
  



LDT	
  Parameter	
  Preprocessing	
  
•  Offers	
  subseZng,	
  reprojecQng,	
  aggregaQng/	
  
downscaling	
  and	
  new	
  Qling	
  opQons	
  for	
  parameter	
  
files	
  onto	
  the	
  targeted	
  LIS-­‐7	
  grid	
  and	
  domain;	
  

•  Group	
  parameter	
  files	
  together	
  in	
  to	
  a	
  common	
  
Netcdf	
  4	
  file,	
  which	
  includes	
  header	
  and	
  grid	
  
informaQon	
  for	
  the	
  data	
  layers;	
  

•  This	
  grouped	
  netcdf	
  file	
  can	
  then	
  be	
  easily	
  loaded	
  
and	
  read	
  by	
  LIS-­‐7	
  at	
  run-­‐Qme;	
  

•  Building	
  into	
  LDT	
  also	
  LSM	
  run-­‐Qme	
  checks	
  (e.g.,	
  
correct	
  parameters	
  selected)	
  and	
  parameter	
  
staQsQcs	
  (e.g.,	
  land/water	
  mask	
  gridcell	
  effects)	
  	
  

7/9/14	
   LDT	
  Overview	
   23	
  



The	
  Land	
  Data	
  Toolkit	
  (LDT):	
  
for	
  Parameter	
  Processing	
  

Parameter	
  
Inputs:	
  

Landmask	
  

Landcover	
  

ElevaQon	
  

Soils	
  data	
  

Domain	
  
InformaQon:	
  

LIS	
  Target	
  
Domain	
  and	
  
ProjecQon	
  	
  

Individual	
  
Parameter	
  
Grid	
  Info	
  

e.g.,	
  NLDAS	
  
domain	
  

LDT	
  Output:	
  

LIS	
  Target	
  
Domain	
  and	
  
ProjecQon	
  	
  

One	
  netcdf	
  
file	
  that	
  gets	
  
read	
  by	
  LIS	
  

Netcdf	
  files	
  can	
  
be	
  generated	
  
for	
  each	
  model,	
  

set	
  of	
  
parameters,	
  etc.	
  

LSM	
  Parms:	
  

Noah	
  LSM	
  

VIC	
  

Catchment	
  
LSM	
  

Others	
  …	
  

7/9/14	
   LDT	
  Overview	
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LDT	
  DA	
  ObservaQons	
  Processing	
  
For	
  DA	
  preprocessing,	
  3	
  op0ons	
  are	
  supported:	
  	
  

•  Generate	
  cumulaQve	
  density	
  funcQons	
  (CDFs)	
  
è	
  for	
  CDF	
  scaling	
  of	
  observaQons	
  within	
  LIS;	
  

•  Generate	
  mean	
  and	
  standard	
  deviaQons	
  for	
  
normal-­‐deviate	
  based	
  scaling	
  within	
  LIS;	
  

•  Anomaly	
  correcQon	
  to	
  observaQons	
  (for	
  
GRACE-­‐DA	
  primarily).	
  	
  

7/9/14	
   LDT	
  Overview	
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LDT	
  Restart	
  File	
  GeneraQon	
  
(featuring	
  ensemble	
  restart	
  genera0on)	
  

•  For	
  ensemble	
  restarts,	
  two	
  current	
  opQons:	
  
– Upscaling:	
  	
  going	
  from	
  one	
  to	
  many	
  ensemble	
  
members,	
  and	
  	
  	
  

– Downscaling:	
  	
  going	
  from	
  many	
  members	
  to	
  one.	
  	
  	
  

•  Future	
  restart	
  generaQon	
  opQons	
  may	
  
include:	
  
– Climatological	
  restart	
  generaQon,	
  	
  
– SpaQal	
  aggregaQon/downscaling	
  of	
  exisQng	
  restart	
  
files	
  

7/9/14	
   LDT	
  Overview	
   26	
  



Other	
  LDT	
  features	
  (as	
  originally	
  in	
  LIS)	
  
•  Writes	
  run-­‐Qme	
  diagnosQc	
  informaQon	
  to	
  a	
  log	
  
file,	
  like	
  in	
  LIS;	
  

•  Handle	
  different	
  LIS	
  projecQons	
  (all	
  interp	
  
rouQnes	
  as	
  available	
  in	
  LIS):	
  
–  Lat-­‐lon,	
  Lambert,	
  Polar	
  stereographic,	
  etc.	
  	
  

•  Work	
  with	
  mulQple	
  member	
  ensembles;	
  
•  Working	
  toward	
  reading	
  in	
  all	
  original	
  LSM	
  
parameter	
  files	
  (of	
  LSMs	
  available	
  in	
  LIS-­‐7);	
  

•  Run	
  mulQple	
  domain	
  nests	
  	
  
•  Future	
  addi0ons:	
  	
  Parallel	
  processing	
  …	
  

7/9/14	
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Current	
  LDT	
  CapabiliQes	
  
1.  SQll	
  able	
  to	
  read	
  in	
  original	
  “LIS-­‐produced”	
  parameter	
  and	
  

observaQon	
  files	
  with	
  binary	
  format	
  of:	
  
§  Direct-­‐access,	
  4-­‐byte	
  real,	
  big-­‐endian	
  binary	
  …	
  

§  Lat-­‐lon	
  gridded	
  files	
  with	
  resoluQons	
  starQng	
  at	
  0.01°	
  (1-­‐KM),	
  
which	
  can	
  be	
  aggregated	
  to	
  other	
  coarser	
  resoluQons	
  and	
  
projecQons;	
  

2.  Moving	
  towards	
  reading	
  in	
  all	
  “naQve”	
  or	
  “raw”	
  parameter	
  
files,	
  obtained	
  from	
  the	
  original	
  insQtuQonal	
  source	
  	
  

3.  Checks	
  performed	
  on	
  parameter	
  file	
  processing;	
  
-­‐-­‐	
  e.g.,	
  Ensure	
  land	
  cover	
  and	
  mask	
  match	
  correctly;	
  	
  (sand+silt+clay)	
  
fracQons	
  ==	
  1	
  

-­‐-­‐	
  e.g.,	
  Parameter-­‐landmask	
  land/water	
  agreement.	
  	
  	
  	
  	
  

7/9/14	
   LDT	
  Overview	
   28	
  



Current	
  Features	
  

Main	
  LDT	
  ConfiguraQon	
  File	
  OpQons	
  



LIS	
  Output	
  Domain/Grid	
  InformaQon	
  

7/9/14	
   LDT	
  Overview	
   30	
  

LDT	
  Op0on	
   Op0on	
   Descrip0on	
  

LDT	
  Running	
  
Mode:	
  

LSM	
  parameter	
  processing	
  
Processes	
  the	
  parameters	
  required	
  
for	
  a	
  given	
  model	
  run	
  within	
  LIS	
  and	
  
outputs	
  to	
  a	
  common	
  netcdf	
  file	
  

DA	
  preprocessing	
  

Prepares	
  certain	
  bias	
  correcQon	
  
staQsQcs	
  and	
  observaQon	
  
processing	
  for	
  data	
  assimilaQon	
  
(DA)	
  runs	
  in	
  LIS	
  

Ensemble	
  restart	
  processing	
   Generates	
  ensemble	
  restart	
  files,	
  
e.g.,	
  netcdf-­‐4	
  file	
  with	
  header	
  info	
  

LSM	
  parameter	
  
a=ributes	
  file:	
   e.g.,	
  param_aEribs.txt	
  

Parameter	
  amributes	
  file	
  which	
  
contains	
  many	
  parameter	
  label	
  and	
  
dimension	
  opQons	
  

Processed	
  LSM	
  
parameter	
  
filename:	
  

e.g.,	
  lis_input.d01.nc	
  
Generated	
  LSM	
  parameter	
  file	
  in	
  
netcdf-­‐4	
  format,	
  required	
  for	
  
running	
  LIS-­‐7.	
  

LDT	
  Main	
  Run	
  Modes	
  



LIS	
  Output	
  Grid	
  OpQons	
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LDT	
  Op0on	
   Op0on	
   Descrip0on	
  

Map	
  projec0on	
  
of	
  the	
  LIS	
  
domain:	
  

latlon,	
  lambert,	
  polar,	
  
hrap,	
  gaussian,	
  mercator	
  

Different	
  output	
  projecQon	
  
opQons	
  on	
  which	
  to	
  write	
  the	
  
parameters	
  for	
  a	
  LIS	
  experiment.	
  

Lat/Lon	
  Rectangular	
  Grid	
  Dimensions	
  (Extents)	
  

Run	
  domain	
  
lower	
  leG	
  lat/lon:	
   e.g.,	
  40.125;	
  	
  -­‐94.875	
  

Enter	
  the	
  lowest-­‐len	
  corner	
  extent	
  
laQtude	
  and	
  longitude	
  values	
  for	
  
your	
  LIS	
  target	
  grid	
  

Run	
  domain	
  
upper	
  right	
  lat/

lon:	
  
e.g.,	
  49.875;	
  	
  -­‐75.125	
  

Enter	
  the	
  upper-­‐right	
  corner	
  
extent	
  laQtude	
  and	
  longitude	
  
values	
  for	
  your	
  LIS	
  target	
  grid	
  

Run	
  domain	
  
resolu0on	
  (dx/

dy)	
  
e.g.,	
  0.25;	
  0.25	
  

Enter	
  the	
  x-­‐	
  and	
  y-­‐direcQon	
  
gridcell	
  resoluQon	
  for	
  your	
  LIS	
  
target	
  grid	
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The	
  LDT.config	
  file	
  



LIS	
  Output	
  Domain/Grid	
  InformaQon	
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LDT	
  Op0on	
   Op0on	
   Descrip0on	
  

Land	
  cover	
  
classifica0on:	
  

UMD,	
  IGBPNCEP,	
  USGS,	
  and	
  
others	
  

Enter	
  the	
  land	
  cover/land	
  use	
  
classificaQon	
  scheme,	
  which	
  varies	
  
with	
  different	
  sources	
  	
  

Create	
  or	
  readin	
  
landmask:	
  

create	
   Creates	
  a	
  landmask	
  from	
  the	
  
landcover	
  file	
  

readin	
  
Reads	
  in	
  a	
  landmask	
  file;	
  future	
  
releases	
  will	
  include	
  more	
  opQons	
  
to	
  impose	
  mask	
  on	
  parameter	
  files	
  	
  

landcover	
  map	
  
projec0on:	
  

latlon,	
  and	
  others	
  
(depending	
  on	
  the	
  
parameter	
  read	
  in)	
  

ProjecQon/grid	
  type	
  for	
  the	
  input	
  
land	
  cover	
  parameter	
  file.	
  

landcover	
  
spa0al	
  

transform:	
  

e.g.,	
  0le,	
  mode,	
  nearest	
  
neighbor	
  

Mode	
  for	
  transforming	
  the	
  input	
  
parameter	
  projecQon/grid	
  to	
  the	
  
LIS	
  output	
  (run-­‐Qme)	
  grid	
  	
  

landcover	
  [grid-­‐
domain	
  inputs]:	
  

For	
  example,	
  
Landcover	
  lower	
  leX	
  lat:	
  	
  	
  	
  -­‐59.995	
  
Landcover	
  lower	
  leX	
  lon:	
  	
  	
  -­‐179.995	
  

Similar	
  to	
  how	
  LIS	
  run	
  domain	
  
extents	
  were	
  specified	
  

Land	
  cover	
  and	
  mask	
  opQons	
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The	
  LDT.config	
  file	
  (con’t.)	
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The	
  LDT.config	
  file	
  (con’t.)	
  



Current	
  LDT	
  Processing	
  of	
  Landcover	
  and	
  Masks	
  

q 	
  Can	
  read	
  in	
  landcover	
  and	
  
mask	
  and	
  subset	
  to	
  desired	
  
LIS	
  target	
  output	
  grid	
  
(current	
  approach	
  in	
  LIS-­‐6)	
  

1

Two	
  Major	
  User-­‐Given	
  Op0ons	
  	
  

1.	
  	
  Parameters	
  on	
  SAME	
  grid/	
  
resolu0on	
  as	
  LIS	
  target	
  output	
  grid	
  

2.	
  	
  Parameters	
  on	
  DIFFERENT	
  grid/	
  
resolu0on	
  as	
  LIS	
  target	
  output	
  grid	
  

q 	
  Read	
  in	
  landcover	
  	
  (e.g.,	
  @	
  1	
  
km	
  res.)	
  and	
  aggregate	
  or	
  
interpolate	
  to	
  LIS	
  target	
  grid	
  

1

q 	
  Create	
  new	
  land/water	
  
mask	
  from	
  new	
  mapped-­‐to-­‐
LIS-­‐grid	
  land	
  cover	
  field	
  

2

q 	
  Apply	
  mask	
  to	
  subsequent	
  
rouQnes	
  and	
  parameters	
  

3

q 	
  Apply	
  mask	
  to	
  subsequent	
  
rouQnes	
  and	
  parameters	
  

2
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LIS	
  Output	
  Domain/Grid	
  InformaQon	
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LDT	
  Op0on	
   Op0on	
   Descrip0on	
  

[Parameter]	
  
spa0al	
  

transform*:	
  

none	
   No	
  scaling	
  or	
  transformaQon	
  needed.	
  

average	
   Average	
  finer	
  resoluQon	
  grid	
  to	
  coarser	
  
scale	
  one	
  (upscale).	
  

mode	
   Select	
  dominant	
  (mode)	
  of	
  finer	
  scale	
  
gridcells	
  to	
  coarser	
  one	
  (upscale).	
  

0le	
   Apply	
  accounQng	
  system	
  for	
  esQmaQng	
  
coarser	
  sub-­‐grid	
  “Qles”	
  for	
  output	
  grid.	
  	
  	
  

neighbor	
   Apply	
  nearest	
  neighbor	
  method	
  to	
  input	
  
grid	
  (upscale/downscale).	
  

bilinear	
   Apply	
  bilinear	
  interpolaQon	
  method	
  to	
  
input	
  grid	
  (upscale/downscale).	
  	
  	
  

budget-­‐bilinear	
  
Apply	
  conservaQve	
  “budget”	
  bilinear	
  
interpolaQon	
  method	
  to	
  input	
  grid	
  
(upscale/downscale).	
  	
  	
  

*	
  NOTE:	
  	
  Not	
  all	
  opGons	
  available	
  yet	
  for	
  all	
  parameters.	
  

SpaQal	
  Transform	
  OpQons	
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LDT	
  Op0on	
   Op0on	
   Descrip0on	
  

Land	
  cover	
   Number	
  of	
  vegeta0on	
  0les	
   Derives	
  fracQons	
  for	
  vegetaQon	
  
type-­‐Qles	
  (summing	
  to	
  100%)	
  

Lake	
  surface	
   Number	
  of	
  lakes	
  (as	
  relates	
  
to	
  FLake	
  at	
  this	
  0me)	
  

Lake	
  fracQons	
  can	
  be	
  esQmated	
  
from	
  lake	
  depth	
  or	
  lake	
  type	
  

Soil	
  frac0ons	
   Frac0on	
  of	
  sand,	
  silt	
  and	
  clay	
   Soil	
  fracQon	
  bins	
  (or	
  Qles)	
  along	
  
with	
  average	
  fracQons	
  per	
  bin	
  

Soil	
  texture	
   Soil	
  texture	
  0les	
   Derives	
  fracQons	
  for	
  soil	
  texture	
  
types	
  

Eleva0on	
   Eleva0on	
  0les	
  (aka,	
  “bands”)	
   Average	
  elevaQons	
  associated	
  
with	
  ranked	
  Qles	
  or	
  “bands”	
  	
  

Slope,	
  Aspect	
   Tile	
  frac0ons	
  and	
  associated	
  
average	
  slope	
  or	
  average	
  aspect	
  

Average	
  slope	
  or	
  aspect	
  
associated	
  with	
  ranked	
  Qles	
  

Fields	
  that	
  can	
  be	
  Qled	
  (or	
  binned)	
  …	
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The	
  param_aLribs.txt	
  file	
  example	
  

LIS-­‐team	
  processed	
  (aka,	
  “LIS-­‐data”)	
  parameters	
  

The	
  parameter	
  a=ributes	
  table	
  (param_a=ribs.txt)	
  allows	
  the	
  user	
  to	
  
select	
  different	
  op0ons	
  for	
  a	
  given	
  parameter	
  type,	
  including	
  

dis0nguishing	
  between	
  “LIS-­‐data”	
  and	
  “Na0ve”	
  parameter	
  data	
  types.	
  



LDT	
  DA	
  Obs	
  Inputs	
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•  Inputs:	
  	
  	
  
–  Enter	
  DA	
  observaQon	
  type	
  (several	
  opQons)	
  
–  Specify	
  the	
  number	
  of	
  bins	
  to	
  esQmate	
  the	
  CDF	
  
–  Different	
  temporal	
  and	
  spaQal	
  map	
  (mask)	
  opQons	
  for	
  CDF	
  
stats	
  

–  ObservaQon	
  count	
  in	
  esQmaQon	
  



LDT	
  Examples	
  

HighlighQng	
  new	
  and	
  unique	
  
features	
  of	
  LDT	
  and	
  LIS-­‐7	
  inputs	
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Example	
  NetCDF	
  Output	
  	
  
(e.g.,	
  lis_input.d01.nc)	
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Parameter	
  Tiling	
  Examples	
  
ElevaQon	
  banding	
  example	
  (5	
  bins)	
  for	
  Afghanistan-­‐Pakistan	
  region	
  (0.25	
  deg	
  lat-­‐lon	
  grid)	
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Slope	
  and	
  Aspect	
  Tiling	
  Examples	
  
Slope,	
  aspect	
  banding	
  examples,	
  Afghanistan-­‐Pakistan	
  region	
  (0.25	
  deg	
  lat-­‐lon	
  grid)	
  

Bin 3 of 
4 total
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DA	
  ObservaQons	
  Examples	
  
•  LDT	
  outputs	
  an	
  effecQve	
  mask	
  file	
  and	
  a	
  file	
  with	
  
scaling	
  parameters.	
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Climate	
  Downscaling	
  Examples	
  

LDT	
  can	
  process	
  and	
  aggregate	
  ~1	
  KM	
  
PRISM	
  or	
  WorldClim	
  precipitaQon	
  
monthly	
  climatologies	
  to	
  any	
  LSM	
  
domain	
  and	
  meteorological	
  forcing	
  
source	
  (e.g.,	
  AGRMET	
  grid)	
  …	
  

0.25°	
  AGRMET	
  Grid	
  

0.01°	
  LIS-­‐7	
  LSM	
  Grid	
  

WorldClim	
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IrrigaQon	
  and	
  Crop	
  type	
  Examples	
  
UMD+CROPMAP	
  dominant	
  crop	
  
categories	
  derived	
  from	
  crop	
  census	
  
databases	
  (see	
  Ozdogan	
  et	
  al.	
  2010).	
  

Ozdogan	
  et	
  al.,	
  2010,	
  SimulaQng	
  the	
  effects	
  of	
  irrigaQon	
  over	
  the	
  U.S.	
  in	
  a	
  land	
  surface	
  model	
  based	
  on	
  satellite-­‐
derived	
  agricultural	
  data,	
  J.	
  Hydromet.,	
  11,	
  171-­‐184.	
  

MODIS-­‐based	
  irrigaQon	
  percent	
  for	
  
each	
  0.125	
  deg	
  gridcell,	
  circa	
  2001	
  
(see	
  Ozdogan	
  et	
  al.	
  2010).	
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Mask	
  (and	
  Regional	
  Mask)	
  Examples	
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Parameter-­‐Mask	
  Consistency	
  Check	
  Example	
  
LDT	
  ensures	
  consistency	
  between	
  the	
  landmask	
  and	
  parameter	
  files.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
For	
  example,	
  LDT	
  modifies	
  the	
  NCEP/NCAR	
  global	
  STATSGO	
  soil	
  texture	
  file’s	
  
built-­‐in	
  land/water	
  mask	
  to	
  match	
  the	
  UMD	
  land-­‐mask.	
  	
  	
  	
  

Difference	
  between	
  original	
  and	
  re-­‐masked	
  soil	
  
texture	
  

Original	
  

Remasked	
  

LDT	
  Overview	
  

Remasked	
  



Summary	
  
•  The	
  Land	
  surface	
  Data	
  Toolkit	
  (LDT)	
  is	
  a	
  new	
  
preprocessing	
  toolkit	
  for	
  LIS-­‐7’s	
  model	
  
parameters	
  and	
  DA	
  inputs.	
  

•  LDT	
  offers	
  several	
  features:	
  
– MulQple	
  parameter	
  processing	
  opQons;	
  	
  
– ObservaQon-­‐based	
  DA	
  opQons	
  (e.g.,	
  CDF-­‐
matching);	
  

– Generates	
  ensemble-­‐based	
  restart	
  files	
  
•  LDT	
  supports	
  a	
  variety	
  of	
  opQons,	
  like	
  
parameter	
  Qling,	
  and	
  parameter	
  data	
  types,	
  like	
  
irrigaQon	
  maps	
  and	
  lake	
  model	
  data	
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Future	
  Work	
  
•  Add	
  generic	
  capability	
  to	
  bias	
  correct	
  forcing	
  
variables	
  (e.g.,	
  precipitaQon).	
  	
  

•  The	
  ability	
  to	
  process	
  OPTUE	
  outputs	
  for	
  use	
  in	
  a	
  
subsequent	
  LIS	
  run.	
  

•  Implement	
  observaQonal	
  correcQon	
  strategies	
  used	
  
(Cressman,	
  OI)	
  into	
  LDT	
  -­‐-­‐	
  for	
  updaQng	
  snow	
  (and	
  
possibly	
  other)	
  data	
  sources.	
  	
  

•  Add	
  a	
  layer	
  of	
  machine	
  learning	
  tools	
  (ANN/Bayesian	
  
classifier)	
  that	
  will	
  enable	
  the	
  blending	
  of	
  different	
  
observaQonal	
  sources	
  (e.g.,	
  reprocess	
  LPRM	
  against	
  
in-­‐situ	
  data).	
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Future	
  Work	
  
•  Apply	
  HYMAP	
  (“Hydrological	
  Mapping”)	
  parameter	
  
processing	
  for	
  hydrological	
  modeling	
  applicaQons.	
  

•  Implement	
  original	
  LSM	
  parameter	
  preprocessing	
  
code	
  (e.g.,	
  for	
  CLSM,	
  VIC,	
  etc.).	
  

•  Improve	
  computaQonal	
  I/O	
  (e.g.,	
  parallel	
  netcdf	
  and	
  
other	
  opQons).	
  	
  

•  Replace	
  the	
  spaQal	
  interpolaQon	
  code	
  with	
  ESMF	
  
(would	
  be	
  major	
  change	
  also	
  needed	
  by	
  LIS	
  and	
  LVT).	
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LIS7 capabilities and features  



New Land surface models 

•  VIC(4.1.1, 4.1.2) 
•  CABLE 

•  Catchment (Fortuna 5.2) 

•  SAC-HTET 

•  Noah (2.7.1, 3.3, 3.4, MP) 

•  GeoWRSI 

•  FASST 

•  SiB2, HySSIB 

•  CLM2 

•  HTESSEL 

•  Mosaic 

•  JULES 

•  CLM4.5 

•  SHEELS 

•  FLake  

•  Noah-urban 



Support for surface models  

•  LIS7 will allow multiple “surface” models in 
addition to land surface models.  
–  E.g. A domain could consist of  land points 

(running land surface models), lake points 
(running lake models) and wetland points 
(running wetland models).  

–  LIS would aggregate and “quilt” the outputs 
from these different model types into a single 
output structure.  

–  LIS7 includes the definition of  “patchy 
domains” that represent the sub-domains that 
run surface models 

Land
Lake

Wetland



Flexible subgrid tiling options 
•  LIS6 follows the strategy of  tiling 

based on vegetation distribution 
alone and ignores the sub-grid 
heterogeneity of  other land 
surface parameters (soils, 
topography etc.) 

•  LIS7 allows the tiling space to be 
determined by other land surface 
characteristics (e.g. soil texture, 
elevation, slope, aspect, etc.) 

•  Depending on the domain, users 
can select characteristics to define 
tiling by: (e.g. tile by vegetation and 
elevation).  

•  Required data preprocessing done 
through LDT 

v1 v2

v3

t1

t2

t3

s2

s1

N
topoX

k

N
vegX

i

✓i,k ⇤ vi ⇤ tk

N
topoX

k

N
soilX

j

✓j,k ⇤ sj ⇤ tk

N
soilX

j

N
vegX

i

✓i,j ⇤ vi ⇤ sj

N
soilX

j

✓j ⇤ sj
N

topoX

k

✓k ⇤ tk

VEGETATION

SOIL TOPOGRAPHY

N
topoX

k

N
soilX

j

N
vegX

i

✓i,j,k ⇤ vi ⇤ sj ⇤ tk

✓̄ =

NvegX

i

✓i ⇤ vi



Forcings 

•  Forcing structure has been modified to allow for 
more flexible data transformations 
–  Supports overlays 
–  Supports forcing ensembles 
– Allows for online bias-correction 

•  No more “base” and “supplemental” forcings. 
Everything is a “met” forcing and they can be 
overlaid in the order in which the user chooses.   
– LIS6 only allows the overlay of  supplemental forcings 

and not baseforcings.  



Data Assimilation 

•  Includes support for smoothing algorithms (e.g. ensemble 
kalman smoother) 

•  Support for multiple data products: AMSR-E, SMMR, SSM/
I, ECV, ASCAT, GRACE.  

•  Options for specifying spatially varying error parameters 
•  Support for radiance assimilation.  
•  A new implementation of  a fast fourier transform and 

supports horizontal correlations.  
 



Optimization and Uncertainty Estimation 

•  The new structure allows for the concurrent 
parameter estimation across different model 
classes. 
– E.g. parameter estimation of  both LSM and RTM 

parameters against both soil moisture and Brightness 
temperature observations.  

 



Routing 

•  Includes a suite of  routing algorithms 
– Source-to-sink methods: NLDAS router, HYMAP 
– Models that includes lateral transport of  soil 

moisture (and feedback to the model states): 
NDHMS 

•  Associated topographical processing will be 
supported through LDT  



A new build system  

•  A perl-based 
build system 

•  Prompts the 
user for the 
choice of  
libraries, 
compile time 
options.  



External libraries used in LIS 

•  Uses ESMF5 series – backward compatibility is ensured.  
–  Can use newer releases of  ESMF without interface/code changes in 

LIS.  
•  Grib – consolidated the use of  3 different grib libraries (NCEP, AFWA, 

NCAR) with the ECMWF developed grib-api library. 
–  Includes a documented F90 API – grib-api 
–  Supports both grib1 and grib2 
–  No need to distribute libraries with LIS 

•  LIS7 supports NETCDF4 (and NETCDF3) with options for data 
compression. 
–  NETCDF output follows the CF and COARDS conventions.  

•  HDF5 and HDF4  
–  Optional, used only for reading certain remote sensing datasets 

 
 



Time handling 

•  LIS7 includes support for ‘variable timestepping’ 
–  Each component (LSM, Forcing, RTM, etc.) sets its own 

internal timestep.  
–  LIS computes the minimum timestep among these 

components as the timestep for the global clock 
–  This enables automatic temporal aggregation of  forcings if  the 

LSM is run at a timestep greater than the forcing timestep.  

•  The use of  ESMF-based alarms are eliminated  
–  So that synoptic/monthly/weekly alarm intervals can be 

handled more easily 
–  Resetting/Looping of  the global clock can be handled more 

easily.  
–  Allows better nesting support while coupling to WRF.  



Configuration 
•  The C-function tables have been changed from an array 

structure to a linked list structure 
–  This eliminates the need for hardcoded array sizes for C-

based function tables 
–  This also enables the use of  strings as keys to store functions 

in the C-tables. This leads to a more intuitive lis.config 
interface:  

•  Eg: 



Misc 

•  Options for spatial downscaling (slope-aspect correction 
of  radiation, PRISM/WorldClim-based downscaling of  
precipitation) 

•  Support for irrigation modeling 
•  The restart files are written in NETCDF4 formats (as an 

option) 
•  Better support for higher compiler optimization levels 
•  The default 5-level hierarchy of  LIS outputs will be 

changed to a 3-level hierarchy (OUTPUT/MODEL/
YEARMONTH) 



Land	
  surface	
  VerificaQon	
  Toolkit	
  
(LVT)	
  

!   LVT is a framework developed to provide an automated, consolidated environment for 
systematic land surface model evaluation 

!   Includes support for a range of in-situ, remote-sensing and other model and reanalysis 
products.  

!   Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-
OPT, LIS-UE 

Kumar et al. (2012), Land surface Verification Toolkit (LVT) – A generalized framework for land surface model evaluation, Geosci. Model. Dev.  




Design	
  of	
  LVT	
  

!   Designed as a stand-alone system; Analysis instances are enabled by specifying a 
configuration file (much like LIS). No external scripting is required.  

!   Designed as an object-oriented framework with extensible features enabled for  

!   Specifying new metrics 

!   Specifying new observational datasets.  
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Fig. 2. Three-layer software architecture of Land surface Verification Toolkit (LVT).

in-situ and remote sensing measurements are presented in
Rodell et al. (2004a) and Kato et al. (2007). The LandFlux-
EVAL project, a more recent initiative, evaluated evapotran-
spiration estimates from a number of LSMs against in-situ
data based estimates (Jiminez et al., 2011). Approaches to
define a minimum acceptable performance benchmark of
LSMs by comparing them to calibrated noncausal (statisti-
cal/correlational) models are explored in Abramowitz et al.
(2008). Though these efforts cover a wide spectrum of model
evaluation and benchmarking of model process advance-
ments, the evaluation criteria and the performance metrics
tend to be specific to each application. LVT consolidates the
requirements identified in these efforts within a single frame-
work.
A number of software environments for conducting model

verification has been reported in the literature. The Ensem-
ble Verification System (EVS; Brown et al., 2010) developed
at the US National Oceanic and Atmospheric Administra-
tion’s (NOAA) Office of Hydrologic Development (OHD)
provides an environment to verify ensemble forecasts of
hydrologic and atmospheric variables such as precipitation,
temperature and streamflow, and is used by forecasters at the
US River Forecast Centers (RFCs). Protocol for the Anal-
ysis of Land Surface models (PALS) is a web-based appli-
cation for evaluating land surface models against observed
datasets and calibrated statistical models (Abramowitz et al.,
2008). LVT and PALS will continue to be developed con-
currently to address community goals for benchmarking and
MDF. Model Evaluation Toolkit (MET; Brown et al., 2009)

is a system developed by the Developmental Testbed Cen-
ter (DTC) for the numerical weather prediction community to
evaluate model performance. MET includes several methods
for the diagnostic and spatial verification of NWPmodel out-
puts. However, MET requires that the input datasets (model
output and the observational data) be reformatted to certain
predefined file formats. LVT shares many features with these
existing environments, but focuses on the native use of obser-
vational and model data sets, since the interpretation of the
data formats and reporting procedures is a critical and time
consuming step in the evaluation process. LVT is designed
as a framework that can be directly used and extended by the
individual users and also includes a number of advanced fea-
tures such as the evaluation of data assimilation diagnostics,
standardized land surface diagnostics and uncertainty and in-
formation theory based analysis features. The following sec-
tions describe the design and capabilities of LVT.

3 Design of the LVT framework

LVT is implemented using object oriented framework de-
sign principles as a modular, extensible and reusable system.
The software architecture of the system follows a three layer
structure, as shown in Fig. 2. LVT core, the top layer, encom-
passes generic modeling features, such as the management
of time, I/O, configuration, logging and geospatial transfor-
mations. The middle layer, called “Abstractions” represents
the extensible interfaces defined for incorporating additional
functionalities into LVT. These include plugin interfaces for

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/
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Table 1. List of datasets supported in LVT.

Dataset Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,
Model (AGRMET) from the Soil moisture, soil temperature,
Air Force Weather Agency (AFWA) Snow conditions, meteorology

NLDAS model outputs Water and energy fluxes
Mitchell et al. (2004) Soil moisture, soil temperature,

snow conditions, meteorology

GLDAS model outputs Water and energy fluxes,
Rodell et al. (2004b) Soil moisture, soil temperature,

snow conditions, meteorology

Canadian Meteorological Center Snow depth
(CMC) snow depth analysis
Brown and Brasnett (2010)

Snow Data Assimilation System Snow depth, snow water
SNODAS; Barrett (2003) equivalent

In-situ measurements

AMMA Water and energy fluxes,
(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,
Measurement (ARM) Soil moisture, soil temperature,
(www.arm.gov) meteorology

Ameriflux Water and energy fluxes
(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,
Observations Project (CEOP) soil moisture, soil temperature,
(www.ceop.net/) meteorology

National Weather Service Snow depth, precipitation,
Cooperative Observer Program (COOP) land surface temperature
(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation
Higgins et al. (1996)

Gridded FLUXNET Water and energy fluxes
Jung et al. (2009)

Finnish Meteorological Institute Snow water equivalent
FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture
(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture
(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/
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Table 1. Continued.

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent
(SNOTEL; www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,
(www.srrb.noaa.gov/surfrad/) downwelling longwave

Southwest Watershed Research Center Soil moisture,
(SWRC; www.tucson.ars.ag.gov/dap/) soil temperature

USGS water data Streamflow
(waterdata.usgs.gov/nwis)

AMSR-E radiances Brightness temperature for
(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, snow depth,
ANSA; Foster et al., 2011 snow water equivalent

GlobSnow; Pulliainen (2006) Snow cover,
(www.globsnow.info/) snow water equivalent

International Satellite Cloud Climatology Land surface temperature
Project; ISCCP; Rossow and Schiffer (1991)
(isccp.nasa.gov)

MODIS/Terra Snow cover 500m Snow cover
MOD10A1; Hall et al. (2006)

MODIS Evapotranspiration product Evapotranspiration
MOD16; Mu et al. (2007)

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE�Land3)
Njoku et al. (2003)

Land Parameter Retrieval Model (LPRM) Soil moisture
from NASA GSFC and VU Amsterdam
Owe et al. (2008)

may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise. Gupta
et al. (2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.
A number of analysis metric types is supported in

LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table 2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect. 5 through a
number of illustrative examples. The availability of this suite

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012

874 S. V. Kumar et al.: Land surface Verification Toolkit

Table 1. List of datasets supported in LVT.

Dataset Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,
Model (AGRMET) from the Soil moisture, soil temperature,
Air Force Weather Agency (AFWA) Snow conditions, meteorology

NLDAS model outputs Water and energy fluxes
Mitchell et al. (2004) Soil moisture, soil temperature,

snow conditions, meteorology

GLDAS model outputs Water and energy fluxes,
Rodell et al. (2004b) Soil moisture, soil temperature,

snow conditions, meteorology

Canadian Meteorological Center Snow depth
(CMC) snow depth analysis
Brown and Brasnett (2010)

Snow Data Assimilation System Snow depth, snow water
SNODAS; Barrett (2003) equivalent

In-situ measurements

AMMA Water and energy fluxes,
(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,
Measurement (ARM) Soil moisture, soil temperature,
(www.arm.gov) meteorology

Ameriflux Water and energy fluxes
(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,
Observations Project (CEOP) soil moisture, soil temperature,
(www.ceop.net/) meteorology

National Weather Service Snow depth, precipitation,
Cooperative Observer Program (COOP) land surface temperature
(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation
Higgins et al. (1996)

Gridded FLUXNET Water and energy fluxes
Jung et al. (2009)

Finnish Meteorological Institute Snow water equivalent
FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture
(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture
(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/

S. V. Kumar et al.: Land surface Verification Toolkit 875

Table 1. Continued.
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may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise. Gupta
et al. (2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.
A number of analysis metric types is supported in

LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table 2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect. 5 through a
number of illustrative examples. The availability of this suite
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Metrics	
  development	
  in	
  LVT	
  
!   A large suite of analysis metrics, including 

accuracy-based metrics, ensemble and uncertainty 
measures, information theory metrics and similarity 
measures has been built into LVT 

Metric Class! Examples!

Accuracy metrics! RMSE, Bias, Correlation!

Ensemble metrics! Mean, Standard deviation, Likelihood!

Uncertainty metrics! Uncertainty importance!

Information theory 
metrics!

Entropy, Complexity!

Data assimilation 
metrics!

Mean, variance, lag correlations of innovation 
distributions!

Spatial similarity metrics! Hausdorff distance!

Scale decomposition 
metrics!

Discrete wavelet transforms!

NASA AMSR-E 

LPRM AMSR-E 
Metric entropy provides a measure of the 
randomness in the soil moisture time series 
at each grid point. The availability of 
information theory metrics in LVT provides 
a way to discriminate model simulations 
based on their information content.   
 

Change in Metric entropy as a result of the assimilation of 
soil moisture retrievals of AMSR-E from NASA and LPRM 
algorithms 



CapabiliQes	
  
!   LVT reconciles the differences in spatial and temporal resolutions by bringing the 

model (LIS) and observational datasets to a common (user-specified) space and time 
domain.  

!   Support for datasets in their “native” formats; Once the specific plugin to process a 
particular dataset is built, datasets can be directly employed within LVT. E.g. ARM-
CART measurements.  

!   Supports non-LIS datasets for intercomparisons – (An observational processing mode in 
LVT enables the conversion of an external dataset to a “LIS like” form.  

!   Miscellaneous:  

!   Confidence intervals on analysis statistics 

!   Analysis outputs in ASCII, binary, GriB, NETCDF formats 

!   Probability density functions of computed metrics 

!   Stratify analysis by external datasets 

!   Stratify analysis based on a model variable (e.g. day-night stratification) 

!   Land surface diagnostics 



Analysis	
  of	
  LIS-­‐DA	
  outputs	
  

!   Deviations from the expected mean and standard deviations of 
the normalized innovation distribution is used as a measure of 
the optimality of the data assimilation configuration.  

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25

S
en

si
bl

e 
H

ea
t F

lu
x 

(W
/m

2)

Hour

DEFAULT
CALIBRATED

OBS

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25

La
te

nt
 H

ea
t F

lu
x 

(W
/m

2)

Hour

DEFAULT
CALIBRATED

OBS

The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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!  Uncertainty importance measure: An assessment of the 
relative contribution of each parameter to the ensemble 
spread, computed as the correlation between the simulated 
variable and the the parameter, across the ensemble.  



Scale	
  decomposiQon	
  features	
  
!   Tools to characterize the impact of spatial scale on different 

process variables  

!   E.g. Discrete Wavelet transforms, spatial similarity measures S. V. Kumar et al.: Land surface Verification Toolkit 881
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Fig. 8. Percentage contribution to the total improvement in snow covered area POD at different spatial scales,

generated by a two dimensional discrete Haar wavelet analysis.
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Fig. 8. Percentage contribution to the total improvement in snow
covered area POD at different spatial scales, generated by a two
dimensional discrete Haar wavelet analysis.

an example of scale-decomposition evaluation of snow cover
simulations from the LSMs using LVT.
The intensity-scale approach of Casati et al. (2004), orig-

inally developed for the spatial verification of precipitation
forecasts, is used to perform a scale decomposition analy-
sis. The technique employs a two dimensional discrete Haar
wavelet transform that decomposes a given field into the
sum of orthogonal components at different spatial scales. The
mean squared error (MSE) of the decomposed components at
each spatial scale is used to quantify the scale decomposition
effects.
Using the domain configuration at 1 km spatial resolution

over Afghanistan (used in Sect. 5.1), two model simulations
are conducted using Noah LSM (version 2.7.1); one that em-
ploys a terrain based correction of shortwave radiation input
to the LSM and one that does not include such adjustments.
The terrain-based corrections adjust the incoming shortwave
radiation based on terrain slope and aspect, and these changes
in turn impact the evolution of snow over these terrain. The
improvements in the snow cover simulation as a result of
the terrain-based correction is computed as the difference in
POD fields from the two simulations, generated by compar-
ing against the MOD10A1 (version 4) fractional snow cover
product. The scale-decomposition approach is then applied
to this difference field, to quantify how the improvements in
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales.
Figure 8 shows the result of scale decomposition of the to-

tal improvement field for POD using the two dimensional
discrete Haar wavelet transform. The algorithm computes
successive decompositions of the original field by powers of
2. The percentage contribution to the total improvement at
each coarse spatial scale is shown in Fig. 8. The results indi-
cate that most of the improvements in POD are obtained at
fine spatial scales and the contribution of the scale decreases
with increase in spatial resolution. At scales coarser than
16 km, the percentage contribution drops below 10%. Simi-
lar analysis of scale effects can be performed on other metrics
and variables of interest. This example demonstrates the use

of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
typically used. The incorporation of spatial pattern compar-
isons will aid in further improving the reliability of LSMs
for hydrological applications (Bloschl and Sivapalan, 1995;
Grayson and Bloschl, 2000). A review of spatial similarity
methods in hydrology is provided in Wealands et al. (2005),
which includes techniques based on statistical identification
as well as image processing techniques. In this section, an ex-
ample of using a similarity metric through LVT to compare
snow cover patterns from two different LSMs is presented.
Snow cover estimates using two LSMs, Noah (version 3.2)

and CLM (version 2; Dai et al., 2003), forced with GDAS and
CMAP datasets, are generated over a 100⇥ 100 region near
the Southern Great Plains in the US at 1 km spatial resolution
for a time period of 1 November 2008 to 1 June 2009. The
LSMs have different representations of snow processes, with
Noah employing a simple single snow layer scheme. CLM
includes a more complex five layer snow scheme with param-
eterizations for temporally varying snow albedo, as a func-
tion of snow cover and snow age. Both LSMs simulate tem-
porally varying snow density with evolution of patchy snow
cover. The model simulations are evaluated against the frac-
tional snow cover observations from MODIS (MOD10A1
version 4) using the “Hausdorff distance” similarity metric.
Hausdorff distance (HD) measures the similarity of points

in two finite sets and is not designed to find one-to-one cor-
respondence between points in each set. It is expressed as the
maximum distance of a set to the nearest point in the other
set:

h(M,O) = max
m2M

{min
o2O

{||m � o||}}, (3)

where h(M,O) is the HD value, m and o are points of sets
M (representing model) and O (representing observations),
respectively. ||m � o|| is the norm of the points in the model
and observation spaces and can be computed as the Euclidean
distance between m and o.
Figure 9 shows a time series comparison of the cumulative

HD measure from Noah and CLM snow cover simulations
for the winter season of 1 November 2008 to 1 June 2009.
More temporal variability in HD values is observed during
the snow evolution and ablation periods and it drops during
the peak snow season, suggested by the flattening of the cu-
mulative HD curves. This indicates that there is more con-
sistent agreement in the observational and model simulated

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012

!   Percentage contribution to the total improvement in snow 
covered area POD at different spatial scales, generated by a 
two-dimensional discrete Haar wavelet analysis.  



Hydrological	
  Products	
  development	
  
!   A suite of common, normalized indicators used for drought monitoring has been developed in LVT 

(e.g. Standardized precipitation index (SPI), Standardized Runoff Index (SRI), Standardized Soil 
Water Index (SSWI), Percentiles  

July 30, 2002 

Jan 3, 2006 

Sept 27, 2011 

Root zone soil moisture based 
drought percentiles generated by 
LVT from a LIS simulation 

The capabilities of LVT 
enable an environment for 
performing systematic 
evaluation of the OSSEs 
using various metrics 
including end-use oriented 
measures.  

U.S. Drought 
monitor estimate 



Summary	
  

!  An environment for the systematic, comprehensive and 
integrated verification of land surface models with a large 
suite of metrics.  

!  LVT supports the outputs from various LIS subsystems 
including DA, OPT, UE, RTM etc. 

!  Extensible features for incorporating new metrics and 
observation sources. 

!   A conduit for developing hydrological products (e.g. 
drought/flood indicators). 



Questions? 


